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Abstract 
Energy Optimization in building design field now has been revolutionized due to AI and machine learning applications. Leveraging 
daylight to reduce artificial lighting consumption holds promise for significant energy savings, yet the nonlinear nature of daylight 
patterns poses challenges in prediction and optimization. This study proposes a novel approach to automated light shelf design using 
machine learning algorithms, specifically artificial neural networks (ANNs) such as recurrent neural networks (RNN) by long short term 
memory (LSTM), to accelerate daylighting simulation and optimization processes. The methodology employed two distinct approaches: 
Firstly, we employed the theoretical-analytical approach to explore methods for utilizing machine learning in natural lighting and light 
shelf parameters. Second, the practical and applied method involved creating a predictive model for designing the light shelf using 
appropriate AI and ML techniques. This model is based on an office geometry model at the El Arish weather file in Egypt, four-
dimensional training room models with three internal zones-oriented south. Rhinoceros and Grasshopper, two parametric simulation 
tools, are used to normalize and optimize light shelf parameters like geometry cross-section, curvature surface, width, height position, 
depth, tilt angle, and reflectance materials. Then, the Galapagos plug-in and Colibri2 are used for dataset creation and optimization. The 
results demonstrate that automated light shelf operation has a significant impact on internal daylighting quality. RNNs enable rapid 
prediction of optimization models, reducing time consumption in the early design phase. ML facilitates decision-making by generating 
evaluative criteria from user-selected design options. RNNs were classified as good and bad and used LSTM to enhance prediction 
accuracy for efficient illuminance values metric in zones 1 and 2. Challenges include increasing the simulation procedure's efficiency. 
The results of model accuracy reached 99%. Hence, future research should prioritize resolving the previously identified concerns. In 
conclusion, this study underscores the importance of ML-driven approaches in early design phases to optimize building energy 
consumption and pave the way for sustainable architectural practices. 

© 2024 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/). 

1. Introduction
It is now widely understood around the world how important it is 
to improve buildings' performance and sustainability. Because of 
this, smart design choices are needed to reduce lighting system 
electricity [1]. An environmentally conscious methodology for 
amplifying energy efficiency [2] involves the integration of 
daylighting strategies, as underscored by the International Energy 
Agency [3]. This encompasses the efficient management of 
natural daylight within architectural structures, as expounded upon 

by Reinhart and Mardaljevic [4,5] and further elaborated by 
Ayoub in 2020 [5]. 

The issue of building energy consumption has emerged as a 
prominent global concern, prompting numerous countries to 
propose and adopt criteria and objectives aimed at enhancing 
building energy efficiency [6]. In recent years, Egypt has 
experienced a notable urban expansion in residential sectors, a 
development associated with a concomitant deterioration in indoor 
environmental conditions, as reported by Ayoub [7]. To ensure 
adequate illuminance with minimal energy consumption, it is 
imperative to adhere rigorously to optimal design principles and 
technical specifications concerning artificial lighting [8]. 
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In sustainable architectural design, there is a growing use of 
climate-based daylight autonomy (DA) metrics for quantifying the 
ingress of natural light into a structure and the consequent energy 
conservation achieved [9]. Furthermore, it is noteworthy that 
lighting energy serves as a primary heat source, exerting a 
substantial influence on the demand for cooling power. Natural 
daylight provides notable health advantages to occupants within a 
building and concurrently diminishes the energy demand 
associated with artificial lighting [10]. Furthermore, well-planned 
daylighting systems effectively decrease energy usage and 
harmonize the heating and cooling demands of structures while 
also promoting human well-being and facilitating various 
activities [11]. Daylight augmentation heightens human visual 
responsiveness, amplifies motivation, and results in elevated user 
performance and productivity among workers [11].  

Buildings are expected to demonstrate sustained performance 
over their entire life cycle, and the reduction of energy 
consumption is just one of the various factors that are increasingly 
prioritized and anticipated. Design professionals and researchers 
are progressively engaging with energy efficiency considerations 
because of enhanced accessibility to insights derived from 
building performance assessments. Nevertheless, conventional 
methods of data analysis encounter difficulties in managing 
potentially vast quantities of data generated during the design 
phase [12]. Daylight serves as the principal illuminant in office 
buildings, primarily during daylight hours, to create a comfortable 
and productive workspace. Adequate daylighting, complemented 
by artificial lighting systems, fulfills the criteria for both visual 
and psychological comfort conditions [11]. 

Recently, there has been a notable focus on optimizing both 
energy efficiency and visual comfort in indoor environments. This 
emphasis has resulted in regulations aimed at effectively 
harnessing natural light in combination with artificial lighting 
systems. The integration of lighting controls and blind control 
holds promise for reducing energy costs [13]. Computerized 
building design has evolved to enhance the efficiency of the design 
process. Researchers have explored the use of machine learning 
methodologies to forecast the performance of building designs. 
Presently, within existing building design software, the fusion of 
optimization techniques with computerized design tools remains 
relatively limited. Only a select few tools have incorporated 
certain optimization methods, such as genetic algorithms [14]. 

 While machine learning-based models have garnered 
significant interest in expediting daylight simulation processes, it 
is worth noting that their overall capacity for generalization 

remains constrained [10]. Chatzikonstantinou et al. suggested that 
the utilization of advanced computational simulation methods can 
offer valuable insights during the design phase of performance-
centric architectural projects. Nonetheless, the substantial 
computational demands associated with these tools often impede 
the design process, particularly during the early conceptual stage 
when critical decisions need to be made. Consequently, decision-
makers frequently resort to evidence instead of the more 
comprehensive and precise data afforded by contemporary 
computational approaches [15]. To advance the development of 
automated daylight control systems, research efforts have been 
directed toward the creation of intelligent prediction algorithms. 
These algorithms are essential because of the non-linear attributes 
of daylight. Nevada et al. investigated predictive algorithms for 
this purpose [13]. Lighting control systems can substantially 
enhance their performance through precise predictions of energy 
consumption and natural light levels. Simplified or data-driven 
methodologies are typically preferred in scenarios demanding 
rapid responses, particularly in the context of advanced real-time 
control and optimization applications [16,17]. In contemporary 
architectural practice, the adoption of green building information 
modeling (BIM) has become indispensable for architects and 
design teams. This integrated approach enables comprehensive 
design and analysis [18]. 

The performance of daylight-linked control systems exhibits a 
significant dependency on the placement of sensors. Specifically, 
the illuminance measurements recorded by the photo sensors 
responsible for luminaire operation do not consistently correlate 
directly with the illuminance levels at the work plane. This 
disparity in measurements leads to inaccurate data inputs for 
daylight-linked control systems, thereby diminishing their 
efficacy [8]. We can use the neural network algorithm's machine 
learning capabilities to make sure that the light levels at the work 
plane are consistent with those measured on a different surface. 
The inclusion of luminance-based criteria in architectural design 
practice is computationally intensive and time-consuming because 
of the requirement of generating luminance maps for each time 
step throughout the entire year, which is a necessity for annual 
simulations [19]. 

A lot of attention has been paid to using machine learning-
driven models to speed up the daylight simulation process, but 
their limited ability to generalize has kept them from being widely 
used [10]. Artificial neural networks (ANNs) were employed to 
forecast indoor environmental parameters instead of relying on 
computationally demanding simulations [9]. Using machine 
learning (ML) can help architects and decision-makers figure out 
how well a building will work at first by taking into account things 
like blocked views and the design of facades, so they don't have to 
do as much analysis [7,20], when doing ML-based modeling [21]. 
There is a chance that machine learning algorithms could be used 
to make an accurate indoor daylight simulation tool that can be 
used to evaluate daylight performance early on in the design 
process and to set up energy-efficient daylight control systems 
[21]. To precisely and effectively control the level of light and 
uniformity of light in indoor spaces that are affected by changes in 
daylight is a difficult task, mostly because lighting control systems 
are not linear and change over time [22,23].  

The use of building performance analysis (BPA) aids 
individuals in comprehending the efficacy of their design 
concepts. This comprehension, in turn, streamlines the design 

Nomenclature 
AI Artificial Intelligence 
ML Machine Learning  
MLAs Machine Learning Algorithms  
ANNs Artificial Neural Networks 
RNN Recurrent Neural Network 
LSTM Long Short Term Memory 
DA Daylight Autonomy 
BIM Building Information Modeling  
BPA Building Performance Analysis  
IOT Internet of Things  
HPC High-Performance Computing 
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decision-making process and establishes a foundation for the 
ongoing refinement and enhancement of design proposals [18]. In 
the realm of architectural design, initial determinations regarding 
the architectural structure and the configuration of windows have 
a pronounced impact on the yearly illumination performance of 
office spaces. Daylight has the capacity to diminish the reliance 
on electric lighting within indoor building environments. This 
process is made possible through the deployment of sensors that 
transmit illuminance information to a lighting control system [24]. 

A prerequisite for generating precise and expeditious 
predictions from freshly input data is the extraction of pertinent 
information from the daylighting field. Among the multitude of 
technologies, both historical and contemporary, that serve this 
purpose, one notable solution is the use of shading devices as a 
light shelf tool. These devices are indispensable in hot and humid 
climates because they shield indoor buildings from solar radiation 
infiltration, which mitigates the energy demand associated with 
cooling. Optimal light shelf angles vary seasonally to enhance 
energy efficiency and indoor illumination uniformity. 
 
2. Research significance 
The benefits of daylight are diverse, encompassing aesthetic, 
physiological, and economic advantages. Optimizing the 
admission and distribution of natural light in buildings enhances 
their capacity for energy efficiency and creates a conducive indoor 
environment that promotes health and comfort. 

Employing sustainable lighting technologies, such as side 
daylighting systems and active daylighting systems, will address 
several issues associated with current passive daylighting systems, 
including reliance on artificial illumination and energy 
consumption. 

Automated Light Shelf is an effective system in dark zones with 
integrated advanced tools and sensors and in a test room as an 
office space. Conduct a simulation to collect and analyze the 
performance of daylighting, and use data science techniques to 
evaluate the results to get the best possible daylighting 
performance. Genetic algorithm based on illuminance values of 
daylight metrics and data science of machine learning. 

Data-Mining is a framework for an automated light shelf in a 
space with an ML concept and occupant's needs lighting system, 
which detects data from occupants and the environment and 
adjusts its output in real-time to meet predefined goals such as 
energy efficiency and user-dependent variables. 
 
3. Objectives of the study 
Practitioners and researchers require extended daylighting 
simulations to predict the efficacy of their design techniques and 
decisions. The method of machine learning can be used to predict 
these various types of lighting and gather valuable information 
from the predicted results, and it can also help to reduce the time 
for testing and redesign in the development of new lighting 
systems such as light shelves. 

The main goals of the research are to provide designers with 
automation tools that can relieve them of menial tasks, provide 
data-driven insights to guide the design process, and aid in the 
evaluation of complex, high-dimensional designs in office spaces. 

One of the challenges is the difficulty in precisely evaluating 
and reducing the time required for the simulation process. This 
would entail employing techniques such as machine learning and 

doing analysis on additional time periods in order to enhance the 
validity of the results. 

This research focuses on the diverse office spaces within office 
buildings, which are known for their high electrical energy 
consumption. The deep layout of the internal environment, which 
necessitates daylighting throughout the rear internal areas, 
primarily accounts for this heightened energy demand. Given that 
office buildings are typically in use during daylight hours, 
implementing daylight strategies presents an opportunity for 
energy conservation. These strategies could include the integration 
of automated light shelf tools paired with artificial light sensors. 
The study proposes using machine learning techniques to develop 
a predictive model for designing the light shelf tool about daylight 
availability. By utilizing artificial neural networks, this approach 
aims to expedite the design process and optimize energy savings 
in the early stages of building planning. 

 
4. Research problem  
The study was in El Arish, Egypt, to evaluate an office space with 
a curved automated light shelf system in a hot, dry climatic zone 
according to the Köppen-Geiger classification. The South's light 
is useful, but it is undesirable for the interior space due to 
excessive heat and sun exposure in the near window zone. 
Furthermore, proper light distribution minimizes the use of 
artificial lighting in two internal zones of space, especially the 
middle and rear zones, which all lead to energy savings in the 
building. An analysis of the measured illuminance allows for a 
precise evaluation of the benefits of employing an automated light 
shelf in three distinct interior areas. A thorough study was done to 
look at the differences in the levels of brightness between models 
with curved mirror aluminum and prismatic panel sliding light 
shelves on an externally positioned and flat mirror internally light 
shelf model. 
 
5. The study limitations and assumption 
The research posits that by utilizing the offered smart lighting 
technology through an AI/ML-automated light shelf system, it is 
possible to optimize the distribution of daylighting indoor space 

 
Fig. 1. Long short-term Memory is a type of recurrent neural network. 
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within the built environment while achieving maximum energy 
reduction through the use of a genetic algorithm. The study 
presents a machine learning (ML) approach, specifically neural 
networks (NN), which has the potential to accelerate daylighting 
simulations. Arthur Samuel, one of the early pioneers of AI, 
described machine learning as the “field of study that gives 
computers the ability to learn without being explicitly 
programmed” [25]. ML is the study of statistical models and 
algorithms that use a dataset’s variables to recognize relevant 
spatiotemporal patterns and information [5]. MLAs are used in 
buildings to predict luminous conditions and daytime lighting 
performance. Artificial neural network (ANN) is a type of 
machine learning model that is inspired by the structure and 
function of the human brain. It is composed of interconnected 
nodes, called neurons, that work together to process and analyze 
data [26]. Artificial Neural Network (ANN) models, functioning 
akin to "black box" models, demand minimal detailed information 
about the system and are “able to learn the relationship between a 
big set of data variables in input and the controlled and 
uncontrolled variables by studying previously recorded data, 
similar to the way a non-linear regression might perform”. 
Artificial Neural Network (ANN) is described as a methodology 
akin to regression in statistics, utilized for deriving mathematical 
models from input and output data. Recurrent Neural Network 
(RNN) is a type of neural network architecture that is designed to 
handle sequential data, such as text, or time series data. The key 
feature of an RNN is that it maintains an internal state or 
"memory" that allows it to make decisions based on not only the 
current input but also the previous inputs and the network’s own 
previous outputs [27]. This makes RNNs well-suited for tasks 
where the current output depends on the previous inputs, such as 
language modeling. In a traditional feed-forward neural network, 
each input is processed independently. In contrast, an RNN 
processes the input sequence one element at a time, and the hidden 

state of the network is updated at each step, allowing the network 
to "remember" information from previous inputs. This allows 
RNNs to capture dependencies in sequential data that would be 
difficult to model with a traditional neural network [28]. 

The neurons in each layer are connected to the neurons in the 
next layer, and each connection has an associated weight. These 
weights determine the strength of the connection between neurons 
by using long short term memory (LSTM) [29]. Long short term 
memory is a type of recurrent neural network architecture 
designed to overcome the vanishing gradient problem and 
efficiently capture long range dependencies in sequential data by 
introducing specialized memory with gating mechanisms to 
control the flow of information [30], as shown in Fig. 1. Lars 
Junghans describes in detail the direction toward “automated 
building optimization algorithms”. The most advanced method in 
the area of automation in design synthesis can be found in the 
research led by Stanford professor Vladlen Koltun, whose work 
has been focused on visual computing and design synthesis using 
machine learning. 

 This system accomplishes this by conducting a limited number 
of simulations and using the results to forecast the effectiveness of 
daylighting for thousands of different design configurations. 
Exploiting computational systems that apply machine learning 
tools dynamically through automated light shelves on shadings has 
the potential to enhance natural daylighting. 

The study utilized parametric software Rhinoceros such as 
Grasshopper (Climate Studio) for modeling and simulation of 
daylight analysis, the Galapagos plug-in for controlling 
performance automation, and the integrated Colibri2 plug-in for 
creating datasets. The work was then framed using AI concepts 
and data science by the MATLAB program [31]. Grasshopper is a 
software plugin that operates within Rhinoceros 3D and functions 
as a parametric modeling extension. It utilizes algorithmic 
processes to generate geometric shapes, as shown in Fig. 2.  

 
Fig. 2. The workflow for the predictive daylight modeling. 
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6. Methodology 
The practical and applied methodology involved creating a 
predictive model for designing the light shelf using appropriate 
artificial intelligence and machine learning techniques, 
specifically employing a neural network type, to expedite the 
simulation process and facilitate decision-making that enhances 
design efficiency. By utilizing the design explore tool, architects 
can systematically explore various combinations of light shelf 
parameters, efficiently evaluating their impact on daylighting 
performance. 

This approach allows for the identification of optimal light shelf 
designs that effectively distribute daylight within the building, 
enhancing occupant’s visual comfort and reducing the need for 
artificial lighting. This method can efficiently explore a wide 
range of design possibilities with a small number of samples. It 
has been proven to be significantly more effective than random 
sampling in numerous situations. When using ML to enhance 
daylighting inside a building specifically by optimizing light shelf 
parameters in the next research workflow as shown in Fig. 3. 

In this study, the focus is on improving the internal natural 
lighting environment through parametric decision support in four 
distinct office spaces. According to the Köppen-Geiger 
classification, the weather file for Arish, Egypt, is used. The study 
methodology involves simulating office structures using curved 
light shelves in a hot climate and analyzing their effects on internal 

light distribution. The study measures two distinct days—one in 
summer and the other in winter—at noon to illustrate the variation 
in dynamic light shelving. The subsequent phase involves machine 
learning to select optimal light shelf positions based on internal 
distribution, with sensors deployed in each area of artificial 
lighting. Decisions regarding the light shelf are made based on 
distance, rotation angle, and height from the window sill. The 
average illumination for each area serves as the output 
measurement. 

The South's light is useful, but it is undesirable for the interior 
space due to excessive heat and sun exposure in the near window 
zone. Furthermore, proper light distribution minimizes the use of 
artificial lighting in two internal zones of space, especially the 
middle and rear zones, which all lead to energy savings in the 
building. 

The examination of measured absolute illuminance values 
offers a quantitative evaluation of the benefits of utilizing an 
automated light shelf across three distinct internal zones. A 
thorough study was done to see how the illuminance levels 
reached between zones in models with mirror aluminum and 
prismatic panel light shelves and a model with an external light 
shelf and an internal mirror light shelf. The objective is to create a 
machine learning (ML) algorithm, particularly neural networks 
(NN), with the potential to accelerate daylighting simulation 
procedures by conducting a limited subset of simulations to 

 
Fig. 3. The workflow for the predictive daylight modeling. 
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forecast the daylighting performance of numerous design 
configurations.  

The potential contribution of exploiting computational systems 
applied to machine learning tools on dynamic by automated light 
shelves on shadings in terms of enhancing natural daylighting. To 
address the aforementioned challenges, this study endeavors to 
pioneer an inventive design concept aimed at exploring adaptive, 
automated light shelf geometries and devising novel approaches 
to enhancing architectural aesthetics and human health through the 
design of building envelopes. Moreover, the incorporation of high-
performance computing (HPC) has the potential to expedite the 
entire process, enabling near-instantaneous predictions of intricate 
daylighting simulations instead of prolonged durations spanning 
hours or even days. 

Professionals and scholars require prolonged daylighting 
simulations to forecast the efficacy of their design tactics and 
choices. New machine-learning techniques that let humans and 
machines work together to analyze complex datasets may combine 
machines' abilities to find complex statistical patterns in large 
datasets with humans' abilities to use a wide range of background 
knowledge to come up with plausible explanations and new 
hypotheses. 

The method of machine learning can be used to predict these 
various types of lighting and gather valuable information from the 

predicted results. Simulation of predicted lighting systems can 
also help to set design requirements and evaluate the work of 
lighting designers by comparing the predicted results with the 
actual results. In an office room, each point within a room is given 
a sensor number as a categorical attribute on the middle line. 
However, the spatial correlation between points is not preserved 
during this procedure. The workflow includes steps such as 
creating a prototype model with parameters, gathering training 
data, doing feature engineering, preprocessing the data, and 
designing the topology of a neural network. The subsequent 
sections contain detailed explanations for each stage to aid in the 
implementation of the suggested workflow as shown in Fig. 3. 
 
6.1. Parametric modeling 
The office model's properties, such as the dimensions of the space 
(width, depth, and height), the reflective surfaces, the orientation 
of the office (south-facing window direction), and the size and 
position of the windows, can be modified parametrically about the 
light shelf parameters. Windows have a direct impact on energy 
consumption in two ways. Firstly, during warm seasons, sunlight 
entering through windows increases the need for cooling, resulting 
in higher energy usage. Secondly, during cold seasons, windows 
contribute significantly to heat loss due to the high thermal 
transmittance of the glass. Therefore, an essential aspect in the 

 
Fig. 4. Parametric prototypes of models of variable design. 
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development of energy-efficient buildings is the design of a 
window system that incorporates shading devices, such as a light 
shelf.  

A light shelf is a contrivance meticulously designed to harness 
daylight, particularly sunlight, to channel it towards the rear 
section of a given space [32]. A light shelf can be located outside 
or inside a structure, or perhaps both [33]. The configuration, 
design, and placement of a light shelf dictate how it diffuses 
incoming daylight. A light shelf's key characteristic is that it has 
glazing directly above its surface. The glazing on a light shelf is 
intended solely to allow natural sunlight to enter the space. 
Installing glazing beneath a light shelf can provide both a view and 
natural daylight. A well-designed light shelf enhances a space's 
physical and visual comfort by redirecting incoming daylight and 
improving light diffusion. 

 
6.2. Light shelf materials 
6.2.1. Prismatic panel 
The prismatic panel is composed of a cluster of small prisms 
arranged in a serrated form, similar to a Fresnel lens. However, 
unlike a Fresnel lens, the prismatic panel can redirect light towards 
a specific target. It exhibits several geometrical forms, including a 
pyramid shape, a more slender shape, or even a configuration 
resembling a plated film [34]. The prismatic panels consist of 
transparent acrylic prisms arranged in a series. One side of the 
panels has curvature, while the other side has prismatic faces. 
These faces may be partially coated with an aluminum coating that 
has a high level of specular reflectance. The prismatic panels 
enable the redirection of natural light into the room's interior and 
can also function as shade devices at the same time. The systems 

can be utilized as either stationary or portable systems, situated in 
the vertical orientation of the building's exterior or on the rooftop, 
positioned between the glass panels (in a fixed arrangement), 
either on the outside, it is more suitable to employ it at the upper 
half area of the windows. Prism sheets are chosen and used by the 
features of the product: because their condensing adhesions are 
different; the prism tip's angle; properties of scratch resistance 
based on tip form; the method of surface treatment; Refraction and 
regression characteristics [35].  
 
6.2.2. Aluminum/Mirror panel 
It is an upper part of the shelf design with a 60-cm width and 
curvature surface and a silver polish material with 95% 
reflectance. The surface reflectance was derived from prior 
studies, which commonly employed a consistent set of values: 
75% for wall reflectance, 85% for ceiling reflectance, 33% for 
floor reflectance, and 0.5 for window transmittance. The 
equivalent range was established by expanding the base value in 
both directions for a more versatile application. Tables 1 and 2 
display the domains and steps for the office space variables.  

Certain combinations of the parameters are deemed incorrect, 
for example: 
• WXE must always have a greater magnitude than WXS. The 

same principle applies to WYE and WYS. 
• Ensure that the ratio of windows to walls is not less than 

15%. 
• The limitations WXE-WXS > 1.0 and WYE-WYS > 1.0 

were added. 
• The light shelf length is consistent between WXS and WXE.  

Table 1. Room specification and parameters. 
Room specification  

El Arish, North Sinai- Egypt Location 
Office occupation 
Single clear glass 6mm Glazing 
88% Visual transmittance VT 
6.121 U-Value (W/m2 K) 
Input Range Steps Explanation 
Room Parameters 
Width  3.0 m ∼ 15.0 m 1.0 Width of Room (m) 
Depth 4.0 m ∼ 15.0 m 1.0 Depth of Room (m) 
Height  3.0 m ∼ 3.5 m 0.5 Height of Room (m) 
Thickness 0.25 m 1.0 Thickness of External Wall 
WXS 0.50 m ∼15.0 m 0.5 Window Start Position 
WXE 1.0 m ∼ 15.0 m 0.5 Window End Position 
WYS 0.90 m ∼ 4.0 m 0.50 Window Sill Height 
WYE 1.50 m ∼ 3.5 m 0.50 Window Top Height 
Orientation S  1 South 
Light Shelf Parameters 
LXS = WXS 0.50 m ∼15.0 m 0.20 Light shelf Start Position / Length 
LXE =WXE 1.0 m  ∼ 15.0 m 0.20  Light shelf End Position / Length 
LW 0.20 m ∼ 1.20 m 0.20 Light shelf Width 

LA° -30 +30 5° Light Shelf Angle 
R_LS 73%, 95% 2% Reflectance of Light shelf surface  
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• As a result, around half of the potential pairings were 
eliminated for further processing. 

An hourly measurement of multidimensional spaces for 
samples, which will be made for two days a year, is as follows: 
Table 3. 
 

Table 2. Fixed and variables parameters for model training. 
 Variables in training dataset Number of 

alternatives 
Variables in the validation 
dataset 

Number of 
alternatives 

Fi
xe

d 
pa

ra
m

et
er

s 

Location North Sinai, Egypt - North Sinai, Egypt - 
Occupation Office 

occupancy time: (8:00 AM- 5:00 PM) 
- Office 

occupancy time: (8:00 AM- 
5:00 PM) 

- 

Window Glass Type Single pane glass 1 Single pane glass 1 
Space Height 3.5 m  1 3.5 m 1 
Window Orientation south 1 south 1 
Space Dimensions 
(X,Y) 

 (6mx7m), (8mx10m), 7mx12m), 
(7mx15m) 

4 - - 

Reflectance Interior Surfaces 
(ceiling, walls, floor) 

85%, 75%, 33% 1 Reflectance Interior Surfaces 
(ceiling, walls, floor) 

1 

Internal light shelf Internal (mirror) 1 Internal (mirror) 1 

V
ar

ia
bl

e 
pa

ra
m

et
er

s 

Window sill Min.90 m - vary vary Window sill Automated 
Window lintel  Max. 2.9 m - vary vary Window lintel  Automated 
Window width Connected and equal variation vary Window width Automated 
Light shelf width vary Light shelf width Automated 
External Light shelf 
Height/position 

1/2 Of Upper Window Height vary Light shelf Height/position Automated 

internal Light shelf 
Height/position 

Connected external Light shelf 30 cm depth Connected external shelf Automated 

Light shelf angle Automated vary Light shelf angle Automated 
Light shelf length Min. 60 m –Max.1.20m  3 Light shelf length Automated 
Light shelf material Prismatic panel  

Aluminum sheet 
2 Light shelf materials Automated 

Total number of iterations /each room/each season = 676 (5408)  

 

 
Fig. 5. Parametric script of room model with automation concept by Grasshopper canvas plugin. 
 
Table 3. Time of calculations. 

Summer 1 June to 31 August Target day Target time 
21-06-2023 ( 12 pm at noon) 

South window Winter 1 December to 28 February 21-12-2023 
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7. Results  
Not only is the amount of light controlled, but its direction and 
distribution are also crucial factors in daylighting design. To create 
a more even distribution of light across the office space, an 
efficient side-lighting system will lower the amount of light 
coming in via the windows in zone (3) and raise it in the sections 
farther away from the windows in zones (2) and (1). 

A prediction model based on recurrent neural networks (RNN) 
is created using a synthetic database that contains the design 
factors and illuminance values of daylight. This database is used 
to train and test the predictive model. The parametric model 
established in the preceding section is employed to produce CSV. 
File by Colibri2 plug-in iterator generates files for various regions 
in the daylight simulation. To train the light shelf model, it is 
necessary to carefully determine the types, ranges, and steps for 
each variable. We also need representative room samples to 

provide the training data, for example, a room (15 m x 7 m) 
extracts to design the Explore website. 

 The attempt to integrate data from rooms of different sizes, 
meanwhile, encountered the issue of contradictory data. The 
analysis grid of the working plane, positioned at a height of 0.76 
m, identified the specific number of target output zones for each 
room. The sensor sites were positioned centrally within each 
room. The study aimed to optimize the illuminance output of 
daylighting performance (300 lux to 500 lux), as shown in 
equation 1. Each sample must have a predetermined number of 
sensor points, resulting in a distribution of sensor points along the 
central axis of the room when the room's dimensions are altered. 
The challenge was resolved by manipulating the spatial 
characteristics of the sensor points through feature engineering, 
namely by reorienting and normalizing their zones in each room 
as shown in Figs. 4-6. 

 
Fig. 6. Parametric prototype model of the light shelf study scenario involves normalizing each zone and installing an interior light shelf to eliminate glare next to the 
window. 
 

 
Fig. 7. Structure of the proposed ANN. 
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Fig. 8. Designs explore visualization of the data set; A- Matrix Bar Analysis, B- Plans of Simulated Cases, C- Chart of Simulated Cases, D- Isometric, E- Sensor Points 
in Middle Line, F- Sheet Spread of Cases (Source: https://tt-
acm.github.io/DesignExplorer/?ID=aHR0cHM6Ly9kcml2ZS5nb29nbGUuY29tL2RyaXZlL2ZvbGRlcnMvMU9rZ0JDekNaNWJwb1FrRkJ2NnRJaUk0MFVkd3dNcS
1YP3VzcD1zaGFyaW5n). 
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Fig. 9. Designs explore visualization ample room 7m x 15 m in the summer season. 

 

 
Fig. 10. Designs explore visualization of room 7m x 15 m in winter season. 

 

http://creativecommons.org/licenses/by/4.0/


345 O. S. Zekry et al. / Journal of Daylighting 11 (2024) 334–348 

2383-8701/© 2024 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 

7.1. Neural network architecture and parametric optimization 
The benefits of this feature engineering are threefold: It explicitly 
defines the spatial relationship between the different points and 
decouples the spatial feature from the room dimension and 
orientation; the recurrent neural network (RNN) can learn and 
anticipate the exact illuminance value for each zone using 
continuous spatial input. This means that it is now feasible to 
retrieve the illuminance value for every zone without being limited 
to a predetermined simulation grid; this greatly augments the 
sample size, hence enhancing the potential for improved model 
performance.  

𝐴𝐴𝐴𝐴𝐴𝐴. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 𝑖𝑖𝑖𝑖 𝑧𝑧𝑧𝑧𝑖𝑖𝐴𝐴 1&2 = ∑ 𝑖𝑖(𝑤𝑤𝑓𝑓𝑖𝑖 ×𝑡𝑡𝑖𝑖)
∑𝑡𝑡𝑖𝑖

∈

[0,1],𝑤𝑤𝑓𝑓𝑖𝑖 �
1 𝑖𝑖𝑓𝑓 300 𝑖𝑖𝑖𝑖𝑙𝑙 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≤ 500 𝑖𝑖𝑖𝑖𝑙𝑙
0 𝑖𝑖𝑓𝑓 300 𝑖𝑖𝑖𝑖𝑙𝑙 > 𝐴𝐴𝐴𝐴𝐴𝐴. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 > 500 𝑖𝑖𝑖𝑖𝑙𝑙

(1) 
where (ti) is the occupied hour of the year and (w.fi) is a weighting 
factor that depends on the average illuminance values at zones 1 
and 2 due to the illuminance level (300-500 lux), as shown in Figs. 
6 and 7, and Figs. 8-10 show the results of a room measuring 7m 
x 15m in both the summer and winter seasons for example.  

 
 

Fig. 11. RNN model with 70 % training data and 30% test model in MATLAB program and generate algorithm two classifications good and bad, 100 hidden layers, 
then predict a model to the right position of the automated light shelf. 
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The study neglected illumination in zone 3 because the light 
shelf enhances the middle and rear areas in space. The result shows 
the different internal illuminance values in the office, and then the 
need to automate light shelf with a learning algorithm to optimal 
design position and uniform indoor distribution range from 300 
lux to 500 lux. The RNN model is a subset of the ANN model by 
using short-term memory, which consists of 100 hidden layers as 
shown in Fig. 11. A confusion matrix is a specific table layout that 
allows visualization of the performance of an algorithm, typically 
a supervised learning one. It is used in classification models, as 
shown in Fig. 12. 

The model demonstrates very high accuracy at 99%. It has: 
• Excellent performance in correctly identifying 'good' 

instances with no false negatives. 
• Very few false positives (15 out of 1265 instances). 

Components of the Training  Confusion Matrix: 
True Positives (TP): The number of instances correctly classified 
as positive (good). Here, it is 908. 
True Negatives (TN): The number of instances correctly classified 
as negative (bad). Here, it is 2852. 
False Positives (FP): The number of instances incorrectly 
classified as positive (good) when they are (bad). Here it is 23. 
False Negatives (FN): The number of instances incorrectly 
classified as negative (bad) when they are positive (good). Here it 
is 2. 
Cells in Test the Confusion Matrix: 
Top-left (1250): True Negative (TN); The model correctly 
predicted 'bad' for 1250 instances that were actually 'bad'. 
Top-right (15): False Positive (FP); The model incorrectly 
predicted 'good' for 15 instances that were actually 'bad'. 
Bottom-left (0): False Negative (FN); The model incorrectly 
predicted 'bad' for 0 instances that were actually 'good'. 
Bottom-right (358): True Positive (TP); The model correctly 
predicted 'good' for 358 instances that were actually 'good'. 

When evaluating the model's performance in classifying good 
and bad lighting conditions, test inputs of 300 lux and 800 lux were 
utilized. The model classified 300 lux as 'good,' resulting in the 
light shelf being adjusted to the optimal position. Conversely, 800 
lux was classified as 'bad, prompting a recommendation for the 
light shelf to adjust accordingly. These outcomes indicate that the 

model demonstrates a high degree of effectiveness in accurately 
distinguishing between 'good' and 'bad' instances within the test 
data. 

 
8. Discussion 
The dynamic nature of daylight, influenced by seasonal changes, 
necessitates consideration of illumination duration, making it 
challenging to prescribe specific daylight levels in buildings due 
to this variability. The study's goal is to come up with a way to use 
artificial neural networks and genetic solvers to look into large 
solution domains in office spaces, using the evaluation criteria 
used by designers of light shelf systems as a guide. At the early 
stage of the design concept, the external parts of the light shelf 
were combined into two parts: the lower is mirror material, and 
the upper is prismatic material. Then we replaced the positions of 
the parts so that the lower is prismatic and the upper is mirror 
material. This procedure enhanced the illuminance values in 
Zones 1 and 2 in the rear and middle areas, which is the optimal 
light shelf design. 

The design concept of an external light shelf found a large 
amount of glare near the window area in zone 3 in the first 
scenario. We then developed the design to integrate an internal 
light shelf with a depth of 30 cm and automated the external part 
in the upper half window height. This addition enhanced 
illuminance values in indoor spaces in three zones. The RNN 
model is a subset of the ANN model by using long short-term 
memory, in which the confusion matrix is a specific table layout 
that allows visualization of the performance of an algorithm. The 
model demonstrates very high accuracy at 99%. 

 
9. Conclusion 
Over time, the development of indoor lighting control systems has 
undergone a significant transformation, marked by the pioneering 
utilization of sensors, the Internet of Things (IOT), and machine 
learning algorithms. Daylight simulation in architecture provides 
precise indoor lighting measurements but is inefficient and 
requires computational resources. Window design is a complex 
optimization task, that affects building energy performance, 
daylighting, and quality of view, especially in office spaces. 

 
Fig. 12. Accuracy of RNN model by confusion matrix left: training data, and right: test data, which shows 99%. 
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Decision-making tools are needed for effective balancing factors. 
The study explores a method using advanced computer 
simulations to create prediction models using machine learning 
algorithms, gaining academic interest as a surrogate for 
simulations. 

The study uses Artificial Neural Networks (ANN) to predict 
daylighting performance in sustainable buildings. The RNN model 
predicts mean illuminance levels in zones 1 and 2 and the 
probability of daylight glare within the room. The model is used 
to make fast decisions about integrated daylight strategies at the 
early stage of the design process. The training data framework was 
populated with over 676 simulations of each room configuration 
to effectively harness the power of machine learning. The use of 
high-performance computing (HPC) enabled the efficient 
execution of simulations for training data, allowing for the 
prediction of necessary light amounts for room operation. This 
optimization can minimize building operating costs. The 
simulations for illuminance and values took around one minute, 
compared to two hours on a desktop computer. The office model 
features a south-oriented light shelf in the upper half of the 
window, with two materials (mirror and prismatic) and sliding 
curvature surfaces with a 60 cm width mimicking the biomimicry 
approach. Biological inspiration is valuable in engineering design 
[36]. The module uses the armadillo as a light shelf design 
concept. The internal part has a polished mirror upper surface and 
a white bottom surface with a 30 cm width. An automated light 
shelf is a dynamic mobility system with internal and external 
components. It minimizes glare during summer and has a 30 cm 
depth. The external part consists of two curved surfaces, with a 
mirror at the bottom and a prismatic part at the top. Modifications 
improve illuminance levels. The approved configurations' average 
illuminance values ranged from approximately 300 to 500 lux. In 
zone (3), however, the range of less than 2000 lux is considered 
insignificant, particularly in the vicinity of the window area. The 
dynamic light shelf system enhances the indoor environmental 
awareness of occupants throughout the summer, spring, and 
autumn seasons, and winter. 

The workplace's southern window area receives more sunlight 
than farther areas. A dynamic shading system enhances daylight 
quality. Machine learning models can improve daylight 
simulations, allowing informed choices during design. ML 
approaches can optimize window design, lighting control systems, 
and overall building energy efficiency. 
 
10. Recommendations 
Focus on common areas like commercial and residential structures 
for early estimations of Machine Learning Algorithms (MLAs) 
during conceptual design. Increase MLA usage for studying 
difficult climatic zones and weather conditions, considering the 
specific location and meteorological dataset. Research on the use 
of Multi-Layer Analysis to predict daylighting in various systems 
is limited, but their performance could significantly improve 
energy-efficient façade designs, especially in heavily blocked 
environments, and could be beneficial for angular screens, optical 
light redirection, side lighting, and sun-tracking systems. The 
current daylighting conditions method is accurate but requires 
further research. Deep learning techniques like RNN can minimize 
retraining time and effort, reusing the first-constructed model for 
future tasks. Architects are encouraged to incorporate machine 

learning principles into their curricula, as it can significantly 
improve construction processes like performance simulations, 
data quantification, form-finding assistance, and energy efficiency 
optimization. Feature Selection and Sensitivity Analysis are 
crucial for identifying daylighting inputs and analyzing weather 
data effects. However, MLA influence has not been examined in 
other weather files. 
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