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Abstract 
Indoor Air Quality (IAQ) is a significant health determinant in the building environment. Ventilation plays a significant role in providing 
comfortable working conditions and securing contaminant removal from indoor spaces. The heat and effluents generated by cooking 
activity need to be exhausted from the kitchen space to control the IAQ and provide thermal comfort. The study investigates the 
ventilation performance concerning IAQ of five institutional kitchens in an educational campus. This study evaluates the influence of 
building parameters on ventilation performance and IAQ using experimental research and Computational Fluid Dynamics (CFD). The 
empirical part includes field measurement of indoor airflow and IAQ indicators (particulate matter, CO2, temperature, and RH). The 
Integrated Environmental Solutions Virtual Environment (IESVE) software performs the CFD analysis. The 'Local Mean Age of air' 
(LMA) is used as a parameter to analyze IAQ. The findings reveal that the LMA reduces with increased cross-ventilation at the 
operational level and the presence of local exhaust ventilation, such as chimneys. Moreover, a higher slenderness ratio, lower aspect 
ratio, and lower building volume reduce the age of air. 

© 2024 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction
Indoor Air Quality (IAQ) is one of the critical health and safety 
concerns in the built environment. IAQ's worldwide relevance and 
attention in building design became pronounced in the wake of 
airborne transmission during the pandemic. Optimal air quality 
and adequate air circulation are imperative requisites across all 
working environments. Ventilation in buildings is essential for 
reducing and eliminating pollutants and improving IAQ [1–3]. 
Further, ventilation is significant in ensuring thermal comfort, a 
productive working environment, and optimal IAQ in the 
workplace [4]. 

 The  Food Service Industry is one of the largest industries in 
India, employing 6.2 million people [5]. The present study focuses 
on the institutional kitchen environment, a classification of the 
commercial kitchen space that provides meals at colleges, 
universities, schools, hospitals, daycare, senior homes, etc. [6,7]. 
A commercial kitchen is a one-of-a-kind workspace where various 
heating, ventilating, and air-conditioning applications operate 
within a single area [7].  

The cooking process generates a large quantity of radiant heat 
and pollutants that must be controlled to provide acceptable 
thermal comfort and optimum IAQ for workers [7]. Cooking emits 
hazardous pollutants (associated with high morbidity and 
mortality rates) such as particulate matter (PM) and gases like 
carbon monoxide (CO), oxides of sulphur (SOx), and oxides of 
nitrogen (NOx) [8–11]. Commercial kitchen environments are 
vulnerable to high levels of CO2, CO, air-bone mutagens, and 
carcinogens [4]. The primary pollutants assessed in previous 
studies are CO, CO2, NO2, PM2.5, and PM10 [4,12–18]. 

The existing studies [4,13,14] provide evidence about the 
potential health hazards associated with cooking environments 
due to prolonged exposure to pollutants. Inhalation of PM2.5 
causes acute and chronic respiratory diseases and cardiovascular 
illnesses [18]. The study by Guo et al. [19] found that long-term 
exposure to PM2.5 and PM10 can increase the risk of cardiovascular 
and respiratory disorders. 

Cooks are vulnerable to heat stress and poor IAQ due to heat 
and particulate matter generated from cooking, [12] especially in 
warm and humid climates in India. The critical workspace in the 
commercial kitchen is the cooking line, where chefs experience 
high-temperature differences and high concentrations of air 
pollutants [7]. Singh et al. [20] found that prolonged exposure to 
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heat in kitchen environments could impact kidney functioning, 
explicitly leading to an increase in the specific gravity of urine 
among commercial kitchen workers. 

Many research studies [17,18,21-24] evaluated the role of 
ventilation in controlling IAQ and pollutant concentrations in 
building environments. Ruth et al. [17] found that more open 
windows would cause a proportional decrease in household air 
pollution, and the kitchen with good cross-ventilation and no fans 
had the most significant reduction in CO and PM2.5. According to 
Whelan [25], integrating a cross-kitchen airflow system and a 
cookstove with an enhanced combustion chamber is a highly 
impactful measure for improving air quality. Several studies on 
the kitchen environment indicate that increasing ventilation 
dramatically reduces indoor pollutant levels [4,14,16,16-28]. The 
concentration of indoor pollutants has been used as an alternate 
measure of the ventilation rate inside the space [25,26,29]. 

The airflow in naturally ventilated buildings is affected by 
variables such as the building's aspect ratio and opening size [30]. 
The 'World Health Organization' (WHO) also says that improved 
cookstoves, better airflow in the cooking area, and building 
parameters such as adequate opening-to-wall ratios (OWR) and 
aspect ratios are essential for a healthy kitchen [31]. 

Generally, enhanced IAQ is assumed to be achieved only 
through higher energy usage. However, an integrated design 
approach to IAQ and energy can result in a high-performing, 
energy-efficient building with good IAQ [32]. Some studies 
[4,17,30,33] investigated the effect of different opening patterns 
and building features on ventilation and pollutant concentration 
levels in residential kitchen environments. Debnath et al. [30] 

investigated the building parameters of rural kitchens in India that 
reduced the age of air and suggested that IAQ can be regulated and 
enhanced by appropriately designing the built environment. Saha 
et al. [4] say that judicious architectural design focusing on IAQ 
might result in a significantly enhanced working environment 
without additional investment. Therefore, finding the relationship 
between the building parameters, ventilation performance, and 
IAQ will help to develop a sustainable design solution. However, 
previous studies on the ventilation performance of commercial 
kitchens are focused on mechanical ventilation systems. There is 
a remarkable silence on the role of natural ventilation and the 
impact of building parameters on ventilation performance in 
commercial kitchen spaces. Hence, this research focuses on 
assessing the influence of building parameters on ventilation 
performance and IAQ in institutional kitchen environments. 

The majority of studies used the CFD (computational fluid 
mechanics) simulation to examine IAQ and ventilation 
performance [4,27,28,30,33,34]. The analysis of the impact of 
building physical parameters, such as the inlet, exhaust location, 
window size and position, building volume, and the airflow rate 
inside the space, on the distribution of airflow and pollutant 
concentration inside the space is made easier with the use of 
computer simulation. Saha et al. [4] investigated how 
modifications to an existing kitchen reduce CO and CO2 using 
CFD analysis, whereas Debnath et al. [30] explored the impact of 
building parameters on the ‘age of air’ inside the rural kitchen 
space using CFD simulation. 

Hence, the study targets the following objectives. First, to 
experimentally study the IAQ and ventilation performance in 

 
Fig. 1. Weather data of Tiruchirappalli. 
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institutional kitchens. Second, to conduct the CFD analysis of the 
IAQ and ventilation performance in institutional kitchens. Third, 
to find the relationship between building parameters, ventilation 
performance and IAQ. Fourth, to suggest retrofitting solutions 
based on the findings. 
 

2. Methodology and data 
2.1. Study site details 
The study site is an educational campus with naturally ventilated 
kitchens. The campus is located in Tiruchirappalli, Tamil Nadu, 
India. The climate of Tiruchirappalli is warm and humid, as per 
the 'National Building Code 2016' [35]. Figure 1 summarises the 

Table 1. Field data. 
Sample No. Kitchen 1 Kitchen 2 Kitchen 3 Kitchen 4 Kitchen 5 

Dimension of Kitchen 
Length (m) 19 17.6 5.4 12.5 8.85 
Breadth (m) 6.65 8.5 5.4 6.5 4.8 
Height (m) 3.5 (avg) 4 3.2 3.5 (avg) 2.7 
Number of Openings 
Windows 2 9 3 4 3 
Ventilators 14 8  4 1 
Door  1 2 2 3 2 
Size of Opening 
Windows (m) w1=0.8 x 2 w1=2.5x1.4 

w2=1.2x1.4 
w=1.2x0.9 w=1.8x1.2 w1=1.5x1.35 

w2=1.2x1.35 
Ventilators (m) v1=1.8 x 1 

v2=1.4 x 1 
v1=2.5x 0.6  1.1 x 0.6 0.6x0.5 

Doors (m) 1.2 x 4 d1=2.4 x2.1 
d2=1.5 x2.1  

d1=1.2x2.1 
d2=1.8 x2.1 

d1=1 x2.1 
d2=2.6x2.1 

d1=2.25x2.1 
d2=1.2x2.1 

Sill Level of Windows (m) 1 (window) 
1.8 (Ventilator) 

1 0.825 1.2 0.72 

Carpet Area (m2) 118.7  137.7 29.16 83.2  42.48 
Working Height (m) 0.65  0.6 0.7 0.7 0.7 
Allows Cross Ventilation  Yes Yes Yes Yes No 
Chimney/ Exhaust Fan Exhaust Fans Exhaust Fans Ex. Fans & Chimney Exhaust Fans Ex. Fan & Chimney 
No. of Exhaust Fans 3 5 3 4 3 
Size of Chimney - - 5.4 x 0.3 x 0 .6 - 0.4 X 0.3 X 0.6 
No. of Workers – Cooking Staff 25 10 5 10 4 
Non-Cooking Staff 20 8 12 8 4 
The Average Time a Person Stays 
Indoors 

6 -8 Hours 6-8 Hours 4 Hours 6 -8 Hours 6 Hours 

Cooking Device Used   Gas Burner  Gas Burner   Gas Burner  Gas Burner  Gas Burner 
Fuel Using LPG Gas & Bio Gas LPG Gas LPG Gas  LPG Gas  LPG Gas  
 No. of Burners  9 8 4 5 6 
OWR (%) 19% 22% 13% 14% 17% 
Aspect Ratio  1:0.35 1:0.48 1:1 1:0.52 1:0.54 
Volume (m3) 442  559.4  93.3  298  114.6  
Slenderness Ratio 1:1.19 1:2.12 1:1.68 1:1.62 1:1.77 
Nearby Building (if it is more than 5 meters, not applicable) 
Height 8 Nil Nil Nil 3 
Separation Distance 5 Nil Nil Nil 4 

Details of the Field Experiment 
Time of the Measurement Lunch Preparation Time Lunch Preparation 

Time 
Lunch Preparation 
Time 

Dinner Preparation 
Time 

Lunch Preparation 
Time 

(10 am to 12: 30 pm) (9:30 am to 11:30 
am) 

(10 am to 12: 00 pm) (4:30pm to 6:30 
pm) 

(10:30 am to 12: 30 
pm) 

No. of Burners Used at the Time of 
Measurement 

4- 5 4  3 4-5 5  

No. of Inlet Windows/ Openings 8 6 2 2  3 
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weather data of Tiruchirappalli. During most months, residents of 
Tiruchirappalli are exposed to high temperatures and high 
humidity. The coldest month is January at average and minimum 
temperatures of 25.1 °C and 18.5 °C, respectively. The hottest 
month is April, with average and maximum temperatures of 31.6 

°C and 40.1°C respectively. January month experiences an 
average Relative Humidity (RH) of 72.4%, whereas the RH in 
April is 63.6%. Predominantly, wind flows from west to east. 
January month experiences outdoor wind speeds of 1.4 m/s, 
whereas in April, it is 0.9 m/s. 

 
Fig. 2. Plan, photograph and 3D model of all kitchens. 
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The research targets kitchens belonging to hostels and canteens. 
The preliminary study eliminates kitchens with similar building 
parameters (aspect ratio, slenderness ratio, volume, and opening 
wall ratio). Hence, the study investigates five naturally ventilated 
institutional kitchens with varying building parameters. The 
selected kitchens have two or three exhaust fans installed to suck 
the air out of the workplace. Table 1 displays the architectural data 
and details of field measurements. The layout, 3D model, and 
photographs of five kitchens are illustrated in Fig. 2. 

 
2.2. Air quality indicators 
Published studies have formulated various air quality indicators to 
assess the IAQ. The four most commonly used indicators of IAQ 
are the number of air changes (N), contaminant removal 
effectiveness (ε), ventilation effectiveness (Ev), and air exchange 
efficiency (εa) [36,37]. The air exchange efficiency is the most 
relevant indicator of IAQ for a point source of pollutants like 
cookstoves, and it is inversely proportional to the 'mean age of air.' 
[30,36]. The 'Local Mean Age of Air' is used to assess the 
freshness of air inside the building [30]. The average time taken 
by fresh air to travel from an inlet to any location of the space is 
defined as the 'local mean age of air' or "age of pollutant" within 
the space, or simply it is the average amount of time since fresh 
air or the pollutant entered the room [30,38-40]. Therefore, the age 
of air is a significant indicator of IAQ and the quality of ventilation 
in buildings [28,41,42]. The airflow pattern directly influences the 
'Local Mean Age of air' (LMA) and the 'removal efficiency' of 
indoor contaminants [43]. The LMA is determined by building 
parameters and the indoor air pattern [44]. 

The research is divided into two sections: experimental and 
computational study. 

 
2.3. Experimental study method 
Field measurements were carried out to investigate the IAQ and 
ventilation performance of five kitchens. Airflow inside the 
kitchen and the concentration of major pollutants (PM2.5, PM10, 
and CO2) levels were measured to assess ventilation performance 
and IAQ, respectively. All field measurements were recorded 
during the usual working day without disrupting daily chores so 
that the measured values represent the IAQ and ventilation in 
actual working conditions. The experiment measurements were 
carried out in the last week of April. The experiments were 
performed during an extensive cooking activity period. 
Additionally, readings were measured 30 minutes before and after 
the cooking period. The values were collected either during lunch 
(10:00 am to 12:30 pm) or dinner (4:00 pm to 6:30 pm) cooking 
time. 

The indoor airflow is recorded with the help of a Vane Thermo-
anemometer (datalogger Model SD310) with a sampling rate of 1s 
and accuracy ± 2% + 0.2m/s. To measure the airflow inside the 
kitchen, the instrument was kept within an assumed buffer space 
of one cubic meter in the cooking zone, where the cooks are 
exposed to burner heat and effluents from the cooking activity. 
According to the study done by Saha et al. [4] and the author's 
onsite observation, the working height or the burner height is 
considered to be 0.6m from the floor finish. Similarly, 1.6m 
represents the breathing or nose level of cooks. Hence, the buffer 
area starts from 0.6m to 1.6m. The measurements were taken at 
different points in the buffer area at two horizontal planes (at a 

height of 0.6m and 1.6m from the floor) at an interval of 30 
minutes.  

The air velocity was also measured at various points on the 
cross-sectional plane of all windows. The average flow rate 
through the window was calculated by multiplying the effective 
inlet area and average velocity at the inlet. The effective inlet area 
is calculated based on the actual size of openings observed during 
the field measurements.  

Air Changes per Hour (ACH) is the indicator for the ventilation 
performance of the kitchen. ACH  is defined as "the number of 
times the indoor air is replaced by the outside air (which is 
assumed fresh and clean) per unit time, typically on an hourly 
basis," as given by Eq. (1) [45]. 

𝐴𝐴𝐴𝐴𝐴𝐴 = 3600 𝑄𝑄𝑣𝑣/𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    (1) 
where Qv is the volume flow rate of air in m3/s, and Vroom is the 
volume of the indoor space in m3. The Qv  (m3/s) is calculated using 
Eq.(2) [46,47]. 

𝑄𝑄𝑄𝑄 = 𝐴𝐴 × 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     (2) 
where A [m2] is the opening area, Vinlet [m/s] is the air velocity at 
the center of the opening. 

The IAQ is monitored with a handheld IAQ meter (Rave Indoor 
Air Quality Monitor-IAQ 3007R with an accuracy of ± 5%) by 
measuring CO2, PM2.5 & PM10, temperature, and RH. The 
instrument is set 1.5 meters away from the cooking stove and 1.5 
meters above the floor to assess the cook's exposure, ensuring 
minimum interruption and reducing the probability of sensor over-
saturation by allowing dilution with the surroundings [25]. The 
exhaust fans were switched off during the experiment to assess the 
effect of building parameters on natural ventilation. 

 
2.4. Computational simulations method 
CFD methods or numerical models are based on the discretized 
form of the Navier-Stokes equations on a grid of points coupled 
with turbulence modeling [4]. Compared to point data available 
experimentally, CFD analysis may provide detailed airflow 
information over the entire area [48]. CFD can analyze realistic 
indoor airflow and pollutant dispersion in buildings with complex 
geometry [34]. Combined with experimental methods, the CFD is 
the most widely used and can provide precise and reliable data 
about ventilation and IAQ performance [48]. Many studies used 
experimental studies combined with CFD methods to evaluate 
ventilation performance and IAQ [4,27,28,30,36,49,50]. CFD is 
preferred over field measurements for determining the LMA [51]. 
Therefore, the CFD technique is used in this study to analyze the 
air movement and LMA in each kitchen. 

CFD analysis of five kitchens is carried out using IESVE 
(Integrated Environmental Solutions Virtual Environment). 
IESVE is a credible and reliable tool because it facilitates 
integration across various applications, delivering realistic and 
quick results on building performance [52-55]. It’s simple and 
easy input interface is another factor for the selection of this tool 
for the simulation study [53]. Pomponi et al. [56] verified the 
accuracy and reliability of IESVE by comparing the results against 
FLOVENT (a CFD software package). The IESVE software 
includes two simulation programs for evaluating indoor 
environment variables [57]. The first is named 'MacroFlo' and is 
based on the Flow Network Model (FNM) [58]. The second 
program, ' Microflo', is an integrated simulation program based on 
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the 'primitive variable method' and utilizes the steady state three-
dimensional convection-condition heat transfer model [59]. 
'Microflo' allows importing boundary conditions from 'Apache 
Simulation' and to run internal simulations [57]. In this study, the 
CFD analysis tool 'Microflo' is used to examine the airflow field, 
air velocity field, and LMA of each kitchen. 
 
2.4.1. Simulation process 
The study generated a 3D format of each kitchen using the 
'ModellT' application in IESVE. It is the model-building 
component of the Virtual Environment. 'ModelIT' is specifically 
developed to facilitate the integration of appropriate levels of 
complexity inside a model over all aspects of the design spectrum 
[60]. The example of 3D geometry created using ModelIT of 
Kitchen 1 is shown in Fig. 3. 

The location and weather data of the site (Tiruchirappalli) were 
imported into the software. IESVE offers a dynamic thermal 
simulation program called "ApacheSim" based on mathematical 
modeling using the fundamental principles of heat transport 
systems inside and outside a structure [61]. The simulation uses 
real weather data and it covers any time period from a day to a 
year [62]. The 'MacroFlo' link, coupled with Apache simulation, 
gives information regarding the volume of inflow and outflow of 
each opening [58]. This was done to export the room surface 

temperature, room air temperature, and other information and 
variables as a boundary condition in the 'MicroFlo' simulation [59]. 
 
2.4.2. Boundary conditions for CFD model 
The boundary conditions from the Apache simulation were 
imported into the 'MicroFlo' tool. The non-uniformity of the 
boundary temperatures of the interior walls, as assessed by 
IESVE, has the potential to enhance the precision of the indoor 
temperature readings [63]. The surface level boundary conditions, 
such as vents and openings, were added to the model. The solid 
heat source components were added in the domain to represent the 
burners in the kitchen. The temperature given for the solid source 
is 1240 K [4]. 
Grid Settings: The grid spacing and merging tolerance have been 
assigned to their default values. The merge tolerance enables grid 
lines separated by a distance less than the tolerance to be merged 
into a single grid line to reduce unnecessary gridding [59]. 

Turbulence Model: The domain's flow field has been computed 
using the k-ε turbulence model, the most widely accepted and 
utilized turbulence model [53,59,64,65]. The k-ε model calculates 
turbulent viscosity for each grid cell in the computational domain. 
This is accomplished by solving two additional partial differential 
equations, one determining turbulence kinetic energy and the other 
dissipation rate [59,62].  

 

 
Fig. 3. 3D Geometry of kitchen created in 'ModelIT'. 
 

 
Fig. 4. Modification of an existing design. 
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The field measurement day of each selected kitchen is used as 
the simulation date for that kitchen model. This helped to validate 
the simulation results with the experimental results directly. 
 
2.5. Finding a relation between IAQ, ventilation performance, and 
building parameters 
The experimental study analyzed the existing IAQ and ventilation 
performance of each kitchen. The LMA computed using CFD 
simulation is compared with building parameters to find the 
relation between IAQ, ventilation performance, and building 
parameters. The building parameters selected for the analysis are 
aspect ratio, slenderness ratio, OWR, and building volume [30]. 
 
2.6. Improved design of a kitchen 
The study proposes modifications to the existing design of one 
selected kitchen (the kitchen having the least IAQ) to improve 
IAQ. Based on the findings from the investigation, some 
architectural design improvements have been incorporated into the 
computational model. The following revisions have been made.   

Stage 1:  Aspect ratio reduced. 
Stage 2: Windows are added on the east and west walls at the 

working level. 
Stage 3: Local exhaust ventilation (chimneys without fans) is 

added to the roof. 
These revisions are illustrated in Fig. 4. CFD simulation studies 

were used to analyze these modifications. 
 

3. Results and discussion 
3.1. Experimental study 
3.1.1. Ventilation performance of kitchens 
The airflow at the cooking zone (at 0.6 m and 1.6 m levels) and 
ACH were determined to analyze the ventilation performance of 
each kitchen, as shown in Table 2. 

Kitchen 3 has the highest number of ACH. Kitchen1 has the 
lowest rate of air exchange. All the kitchens except kitchen 3 
experienced an airflow less than or equal to 0.1 m/s at the cooking 
zone at 0.6m level and breathing zone (1.6 m height from the 
ground). The minimum wind speed recommended by SP 41 for 
acceptable warm conditions of DBT 36°C, RH 40% is 2.7 m/s and 
DBT 35°C, RH 50% is 2.1m/s [66]. Overall, all the selected 
kitchens do not satisfy the minimum recommended wind speed. 

 
3.1.2. IAQ in kitchens 
To determine the IAQ, the concentration of PM2.5, PM10, and CO2, 
along with temperature and RH, were recorded during the cooking 
activity (Fig. 5). The maximum, minimum, and average value 
recorded in each kitchen is shown in Table 3. 

For all kitchens except kitchen 3, all recorded values of PM and 
CO2 concentration exceed the permissible value of  PM2.5 = 25 
µg/m3, PM10 = 50 µg/m3, and CO2 = 1000ppm recommended by 
WHO and ASHRAE for safe health [18,67-69]. These results 
indicate the possibility of health risks in these kitchens. In the case 
of Kitchen 3, the PM concentration recorded during the intensive 
cooking activity time (10:30 am to 11:30 am) exceeded the 

Table 2. Airflow at cooking zone & ACH. 
Kitchen Airflow at the cooking zone  Airflow across opening Effective Inlet 

area  
Qv ACH 

at 0.6m level   At 1.6m level  W1 W2 D1 
 

(m/s) (m/s) (m/s) (m/s) (m/s) (m2) (m³ /s)  

1 < 0.1 < 0.1 0.15 < 0.1 < 0.1 7.6 1.14 9 
2 0.1 < 0.1 0.2  0.1  0.1  10.5 2.1 13 
3 0.25 0.3  0.4  0.3 0.2  2.16 0.756 29 
4 < 0.1 < 0.1 0.35 0.29 0.5  2.16 1.176 14 
5 < 0.1 < 0.1 0.2  0.2  0.2  3.25 0.65 20 

 
Table 3. Maximum, minimum, and average values recorded in the experimental study. 

K
itc

he
n Minimum value recorded Maximum value recorded Average 

PM2.5 
µg/m3    

PM10 

µg/m3    

CO2 

ppm 

Temp      
0C 

RH % PM2.5 
µg/m3    

PM10 

µg/m3    

CO2 

ppm 

Temp. 
0C 

RH % PM2.5 
µg/m3    

PM10 

µg/m3    

CO2 

ppm 

Temp. 
0C 

RH % 

1 32.3 52.1 1200 35.9 37 510 678 1630 39.1 54 198.4 263.6 1316 37.54 46.45 

2 27.1 34.1 1050 34.7 53 366 458 1550 36.2 60 130.4 182.2 1277 35.56 57 

3 12.8 15.6 930 35.2 51 60.4 87.3 1100 36.5 55 33.6 44.6 1040 35.9 50.4 

4 42 58 1041 37.2 47 273 352 1465 39.2 54 119.6 156.9 1203 38.5 50.4 

5 41.6 52.8 1060 35.8 53 226 287 1300 36.5 55 105 138.7 1148 36.1 53.7 

(Note: The permissible values of PM2.5, PM10, and CO2 recommended by WHO and ASHRAE Standards for safe health are PM2.5=25 µg/m3, PM10=50 µg/m3, and CO2 = 
1000ppm.) 
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permissible safe value according to the ASHRAE standard and 
WHO. In kitchen 3, as the cooking started, the level of CO2 
concentration started to increase and just exceeded the acceptable 
safe level (Fig. 5). The reported CO2 value was below the safe 
limit for the rest of the period. Among the selected samples, 
kitchen 3 was found to have the best IAQ, whereas kitchen 1 
reported the lowest IAQ. 

 

3.2. Validation of computational model 
The air velocity values observed in the CFD simulation were 
compared with experimental data collected. Comparisons were 
made regarding the air velocity at three distinct locations (0.6m 
and 1.6 m in the cooking zone and at window opening inlets), 
which were determined by the measurement points of the 
experimental study. Figure 6 compares the measured and 

 
Fig. 5. The Field Measurement of PM2.5, PM10, CO2, Temperature, and RH in Kitchens. 
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simulated air velocity findings at three distinct points in each 
kitchen, demonstrating a similar trend between experimental and 
CFD simulation, albeit with some deviations. The similar trend in 
the values of air velocity at both the levels in the cooking zone and 
inlet window in both experimental and CFD analysis validate the 
computational model (Fig. 6). The Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) were calculated for the 3 
cases using Eq. (3) and (4) and shown in Table 4. 

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑖𝑖
∑ |𝑌𝑌𝑖𝑖 −𝑖𝑖
𝑖𝑖=1 𝑌𝑌�𝑖𝑖|    (3) 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �1
𝑖𝑖
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤�)2𝑖𝑖
𝑖𝑖=1    (4) 

MAE and RMSE are statistical quantities to evaluate the 
similarity or difference between two data sets and have been used 
in similar previous studies [70-73]. The MAE values for points a, 
b, and c are 0.047, 0.064, and 0.108, respectively, and all were 
within a range of ±11%. The RMSE values for points a, b, and c 
are 0.079,0.087, and 0.148, respectively, and the average of the 
obtained RMSE value is 0.104, which is considered acceptable. 
The highest percentage of error is observed at the inlet point, and 
this aligns with previous literature indicating that steady-state 
simulation is inadequate for predicting airflow fluctuation in 
openings [74-76]. 
 
3.3. Computational study: ventilation performance and LMA of 
kitchens 
In this study, the LMA was expressed as an indicator of IAQ and 
ventilation performance. The air velocity, airflow pattern, and 
LMA in the simulated models are given in (Figs. 7-11). 

The west side windows in kitchen 1 act as inlet openings. The 
air velocity at the working and breathing plane ranges from 0.08 
to 0.12 m/s. Visual analysis of simulation results and air velocity 
patterns at the working plane shows minimal fresh air circulation 
in the cooking zone (Fig. 7). Further, the LMA ranging from 6.1 
to 7.1 minutes in the cooking zone indicates higher air stagnation. 

The windows on the northwest side of kitchen 2 are the primary 
source of air inflow. The air velocity at the working plane is 0.11 
m/s. The maximum air velocity of 0.21 m/s is experienced near the 
burner (Fig. 8). Further, an increased air movement is observed 
near the northwest side windows. The air entering from the 
window and exiting through the ventilator has no significant effect 
on the air movement in the cooking zone. The kitchen does not 
have adequate cross ventilation. The cooking zone has an LMA 
ranging from 5.4 to 6.1 minutes, which is reduced to 0.5 minutes 
near the windows (Fig. 8). The higher value of LMA in the 
cooking zone indicates a high stagnation of air. 

The windows on the east side wall of kitchen 3 mainly 
contribute to the air inflow. The air velocity at the working plane 
ranges from 0.04 to 0.12 m/s (Fig. 9). The air velocity at the 
breathing plane ranges from 0.04 to 0.45 m/s, and the maximum 
value is observed near the east window, which is 0.45m/s. The 
average velocity inside the kitchen is 0.1 m/s at breathing level, 
excluding the area near the windows. Kitchen 3 has a chimney as 
a general or dilution ventilation system for expelling the air. The 
air enters from the east side window and exits through the window 
and door placed on the opposite wall and the chimney. Kitchen 3 
is experiencing cross ventilation in the cooking zone. The LMA in 
the cooking zone ranges from 2.8 to 4 minutes (Fig. 9). 

 
Fig. 6. Experimental vs. computational simulation air velocity for all kitchens. 
 
Table 4. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) between the simulated and measured values. 

 (a) Air velocity at cooking 
zone (0.6m) (m/s) 

(b) Air velocity at cooking 
zone (1.6m) (m/s) 

(c) Air velocity at inlets (m/s)  

MAE  0.047 0.064 0.108 
RMSE 0.079 0.087 0.148 
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The air in Kitchen 4 enters through the window near the cooking 
zone and exits via the ventilators (Fig. 10). However, cross 
ventilation is not effective in the cooking zone. The air velocity at 
the working and breathing plane ranges from 0.06 m/s to 0.11m/s. 
The LMA in the cooking zone ranges from 4.98 to 6 minutes (Fig. 
10). According to the CFD analysis, kitchen 4 has a low fresh air 
flow in the cooking zone, resulting in relatively high air stagnation. 

The windows in kitchen 5 placed on the southern wall act as air 
inlets. There is a relatively smaller chimney (compared to kitchen 
3) at the southeast corner. Airflow examination reveals that the air 
entering through the window rises above the cooking zone and 
spreads in various directions. A relatively minor portion of air 

exists through the chimney. High turbulences in the air are 
observed near the window and above the burners (Fig. 11). The 
cooking zone has an LMA ranging from 4.6 to 5.4 minutes. As a 
result, air stagnation is high. The highest LMA of 8 minutes is 
observed at the passage near the store area. The lower value for 
the LMA (almost zero) is observed near the chimney (Fig. 11). 
 
3.4. Relation between IAQ, ventilation performance, and building 
parameters 
The LMA calculated in CFD analysis is compared with the 
building parameters (aspect ratio, slenderness ratio, OWR, and 
kitchen volume) illustrated in Fig. 12. 

 
Fig. 7. Velocity field, velocity vector, and LMA of Kitchen 1. 
 

 
Fig. 8. Velocity field, velocity vector, and LMA of Kitchen 2. 

 
Fig. 9. Velocity field, velocity vector, and LMA of Kitchen 3. 
 

 
Fig. 10. Velocity field, velocity vector, and LMA of Kitchen 4. 
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It is observed that all the studied building parameters had a 
relation with the LMA. The kitchens with a higher aspect ratio 
have a longer duration of air accumulation (LMA) than those with 
a lower aspect ratio. The kitchens with a higher aspect ratio 
accumulate older air than kitchens with a lower aspect ratio, 
indicating that LMA increases with the aspect ratio. However, 
kitchens with a lower slenderness ratio accumulate older air. The 
study observed a rising trend in the LMA with higher OWR; 
however, the correlation coefficient is much lower. Moreover, the 
LMA increases with the room's volume. 

Building design has a vital role in sustaining air exchange 
efficiency. It is observed that the LMA is increased with a higher 
value of aspect ratio, volume, and OWR and decreased with a 
higher value of slenderness ratio. 

Debnath et al. [30] found that increasing the OWR increases air 
exchange and decreases the accumulation of air in space. However, 
even though kitchen 2 has a substantially higher OWR than other 
kitchens, the IAQ is poor, and the LMA value is high. Further, 
kitchen 3 has the lowest OWR ratio and better IAQ. The results 
suggest that, in addition to the OWR, kitchens with local exhaust 
ventilation, like a chimney, were found to have better IAQ due to 
higher ACH. Moreover, the combination of a low aspect ratio, a 
high slenderness ratio, and a small volume can be responsible for 
better IAQ. The results (of kitchen 5) also show that vents or 
chimneys in the kitchen enhance the ACH and IAQ. Therefore, 
despite having a lower OWR and all its windows on the same wall, 
which limits the possibility of cross ventilation, kitchen 5 has a 
lower LMA than kitchens 1, 2, and 4. Kitchen 5's small aspect ratio, 
volume, high slenderness ratio, and presence of a chimney can be 
attributed to better IAQ. 

Another essential factor that can lead to a decrease in the LMA 
is the position of windows, which is the main driver behind 
adequate cross ventilation. Windows placed near the cooking zone 
and the working level enhances the air movement at the cooking 
zone. Saha et al. [4] examined the impact of strategically placing 
two windows of sufficient size on reducing CO2 and CO levels 
within large institutional kitchens, resulting in improved IAQ. The 
higher LMA in kitchens 1 and 2, despite higher OWR, can result 

from the position of windows. There is good air movement in 
kitchen 1 at a height above 1.6 m (from the floor level) due to the 
high OWR and windows positioned on opposite walls. 
Unfortunately, this has less impact on the cooking zone, resulting 
in low IAQ (Fig. 7). Kitchen 2 has the highest OWR, about 22%; 
however, all windows are on one side. Therefore, air movement 
through windows has little effect on the cooking zone (Fig. 8). Air 
entering through the window moves upward and escapes through 
the ventilators on top of the windows. Kitchens 1 and 2 feature a 
higher aspect ratio and volume and a lower slenderness ratio. In 
the experimental investigation, these kitchens were observed to 
have greater concentrations of PM2.5, PM10, and CO2 in the 
cooking zone than in other kitchens (kitchens 3, 4, and 5). The 
ventilators in Kitchen 4 enhance the cross ventilation in the space, 
thereby increasing the ACH and reducing the LMA, which agrees 
with the study done by Whelan [25] on the significance of cross 
ventilation in kitchen space to improve IAQ. 

Kitchen 3 has better IAQ compared to other kitchens due to its 
small aspect ratio, high slenderness ratio, position of windows, and 
presence of a chimney. These results suggest that the LMA in the 
kitchens is influenced by building parameters such as aspect ratio, 
slenderness ratio, volume, window location, and local exhaust 
ventilation systems such as chimneys. Thus, low aspect ratio and 
volume, high slenderness ratio, the existence of cross-ventilation 
at the operational level, and the presence of vents or chimneys 
have the potential to increase the IAQ by decreasing the LMA 
inside the naturally ventilated building. Therefore, sustaining the 
good IAQ of naturally ventilated kitchens depends significantly on 
the building design. Such actions can potentially improve air 
exchange efficiency, thereby ensuring good IAQ. 

 
4. Improved design of a kitchen 
The modifications to kitchen 1 (with the lowest IAQ) have been 
analyzed using CFD simulation. The main findings from the 
computational study are shown in Fig. 13. 

Stage 1: The aspect ratio of the existing design is reduced by 
making a partition wall between the preparation zone area and the 
cooking space (Fig. 4). The air velocity in the cooking zone 
remained the same. However, the LMA is reduced to 4.7 minutes 
at the working level and 2.5 minutes at the breathing level (Figs. 
7 and 13). The average value of the LMA present at the cooking 
zone is 3.6 minutes (Fig. 13). 

Stage 2: The windows are added on the east and west walls at a 
sill level of 1.1m. Six windows evenly distributed below the 
ventilators were added as air outlets (of size 1.8 m x 0.6 m) and 
inlets (of size 1.4 m x 0.6 m) on the west and east walls, 
respectively (Fig. 4). The total area of the inlets and outlets is kept 
to 30 percent of the floor area, as recommended by SP 41-1987 
[66]. The results are shown in Fig. 13. The total air movement in 
the kitchen has increased. Specifically, the air velocity at the 
cooking zone is increased to a range of 0.12m/s to 0.2 m/s. 
However, the air velocity near the burner was only about 0.04m/s. 
Thus, this airflow pattern has a minimal effect at this functional 
level, which is preferred to keep fire in the burner. The LMA was 
reduced to about 2 minutes at the working level and 1.6 minutes 
at the breathing level. An average of 1.8 minutes older air is 
present in the cooking zone (Fig. 13).  

Stage 3: Four small chimneys of size 1.1m x 0.7m x 1 m were 
added above the cooking zone, as shown in Fig. 4. Five openings 

 
Fig. 11. Velocity field, velocity vector, and LMA of Kitchen 5. 
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are provided on the sides of the windward (0.5m x 0.1m) and 
leeward (0.8m x 0.1m). The results illustrated that the entire space 
has an air velocity of 0.2m/s (Fig. 13). At the cooking zone, the air 
velocity increases to an average of 0.25 m/s, approximately equal 

to the minimum desirable windspeed recommended by standards 
[66]. The LMA was reduced to 1.5 minutes at the cooking level 
and 1 minute at the breathing level. Overall, it is observed that the 
kitchen space has an LMA of fewer than 2 minutes (Fig. 13). 

 
Fig. 12. The empirical relation between building parameters and the LMA. 
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By incorporating architectural modifications derived from the 
study's findings into the existing design of Kitchen 1, a significant 
improvement in ventilation was observed, resulting in a 
substantial decrease in LMA.  The findings presented in the study 

are consistent with the study conducted by Saha et al. [4], which 
showed that incorporating windows into the current design of an 
institutional kitchen improved IAQ. These results of present study 
also align with those of Debnath et al. [30], who observed that 

 
Fig. 13. Velocity of airflow and LMA of different stages of modification. 
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specific building parameters, such as high OWR, aspect ratio, and 
the presence of another window or opening, can significantly 
reduce the age of air in a naturally ventilated rural kitchen. 
However, the results from the current study indicate that strategic 
placement openings play a crucial role beyond merely enhancing 
OWR. 
 
5. Conclusion 
Appropriate ventilation is required in kitchens to remove the 
effluents and heat generated from the cooking to guarantee 
acceptable IAQ for the workers. Building characteristics such as 
aspect ratio and opening size influence the airflow in naturally 
ventilated spaces, which directly impact interior air quality. 

The present study investigated the ventilation performance and 
IAQ of five institutional kitchens using experimental and 
computational methods. The chosen five kitchens are naturally 
ventilated and have various building parameters. The 
concentration of indoor air pollutants such as PM2.5, PM10, and 
CO2 was measured to evaluate the IAQ experimentally, while the 
LMA is used as a metric to evaluate the IAQ computationally. 
Also, the study analyzed the three-dimensional flow field of each 
kitchen for a better understanding of air velocity distribution 
inside the area. 

The average concentration of PM2.5 and CO2 in all kitchens 
exceeds the WHO permissible value for a safe environment. The 
concentration limit of PM10 exceeds the safe limit in all kitchens 
except in kitchen 3. The kitchens investigated in this study pose 
health risks to the workers.  

The study tried to find the impact of building parameters on the 
IAQ of institutional kitchen environments. The study found that 
the LMA is decreased with increased cross-ventilation at the 
working level, local exhaust ventilation like a chimney, and a 
higher slenderness ratio. In comparison, LMA increased with a 
larger aspect ratio and volume of the space. The study implied that 
the LMA, which can impact IAQ, can be regulated and lowered 
by appropriately designing the building environment.  

Contradictory to previous research findings [30], this study's 
results indicate that increasing the OWR alone did not reduce the 
LMA. The strategic placement of windows is essential to achieve 
appropriate air exchange between indoors and outdoors. The 
theoretical study of the improved design of the kitchen also agrees 
with the findings. 

CFD simulation represents a particular day for the analysis. 
Further investigation is required, including the unsteady nature of 
natural ventilation and year-round data that includes seasonal 
variation, to get more realistic data. Moreover, future research 
should consider the effect of burner position, the heat transfer from 
the burner, pollutants dispersion from the burner, and the 
discomfort level of occupants regarding IAQ for a more detailed 
investigation of IAQ.  

This study signifies the need to develop design guidelines for a 
sustainable and healthy built environment for commercial kitchens. 
Hence, it is vital to study the strategic location, orientation, and 
dimensions of openings and chimneys to maintain good IAQ. Only 
limited studies focused on the commercial kitchen's natural 
ventilation design to create a healthy and safe environment. The 
research intends to improve IAQ in future large kitchen designs, 
particularly in developing nations where sufficient funding for 
installing mechanical ventilation may not always be feasible. 
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